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Summary

Trajectory prediction plays a critical role in air traffic management, significantly
enhancing operational safety and efficiency. However, there is significant room
for improvement in prediction accuracy. Efforts to augment accuracy often
leverage artificial intelligence (AI) and other data-driven techniques. A common
challenge with these methods is the often insufficient and imbalanced nature of
training datasets, which impedes accurate trajectory modeling. This can lead to
overfitting, thereby decreasing prediction accuracy. To address these challenges,
we propose an approach with an assertion that a trajectory pattern represented by
fewer trajectories should not be considered less significant for the prediction
model. Given the potential safety implications of incorrect predictions in air
traffic operations, it is important to develop a robust prediction model with
consistent performance. Our methodology involves the identification of trajectory
patterns through clustering with Gaussian Mixture Model (GMM). We then
augment the imbalanced training dataset using a trajectory reconstruction model
based on the Transformer architecture. A Sequence-to-Sequence (Seq2Seq)
architecture with Long Short-Term Memory (LSTM) networks is trained on this
augmented dataset. The efficacy of our proposed method is validated using real

air traffic data and compared to a model trained with the original training dataset.
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1 Introduction

1.1 Motivation

As the demand for air transportation continues to grow, congestion in the
airspace surrounding major airports has significantly increased. To manage this
congested airspace, various Decision Support Tools (DSTs) have been developed
to assist air traffic controllers (ATCs). Central to these tools is a trajectory
prediction model, which plays a pivotal role in air traffic management, impacting

the capacity, efficiency, and safety of the aviation system. [ 1,2, [3]].

Historically, trajectory prediction models have relied on aircraft performance
models and assumptions of flight intent [4} 5, |6} (7, [8, 9]. While these models are
useful, they exhibit limitations, particularly in predicting aircraft trajectories in
complex and dynamic air traffic environments influenced by external factors such

as weather and airspace situations.

With advancements in Automatic Dependent Surveillance-Broadcast
(ADS-B) and flight tracking technologies, there has been a significant increase in
available trajectory data. This presents an opportunity to develop more robust and
accurate prediction models. Previous research demonstrates the potential of
data-driven models in trajectory prediction [[10} |11} |12} |13} |I4]]. These models,
learning from historical data, are suitable for capturing the complex interactions
between various factors influencing aircraft behavior. However, they often face
challenges like insufficient and imbalanced training dataset, which impede

effective learning.



Therefore, there is a need to develop trajectory prediction models that are
both robust and accurate, capable of effectively managing the diversity and
complexity of aircraft trajectory data. Achieving this involves augmenting and
balancing the training dataset while preserving its diversity. This can be
accomplished through trajectory reconstruction, which generates synthetic
trajectories using algorithms or data-driven models. Models trained on such
enhanced datasets are likely to exhibit superior performance. Ultimately, this
advancement would not only enhance decision-making processes of ATCs but
also increase the safety and efficiency of air traffic management, addressing the
increasing demands of air traffic and the growing complexity of air traffic

operations.



1.2 Thesis Objective

An arriving aircraft generally follows the Standard Terminal Arrival Route
(STAR), which is defined as a set of waypoints, or fixed points in
three-dimensional space, as illustrated in Fig. With the introduction of Area
Navigation (RNAV) procedures, aircraft operations along any possible flight path
within the coverage of navigation aids are allowed [[15]]. This provides ATCs with
additional airspace for instructing aircraft and a high degree of freedom in
managing airspace. Therefore, ATCs can instruct aircraft to deviate from the
STARs to more efficiently manage a large number of aircraft by assigning
headings, altitudes, and speeds. Such instructions and deviations are referred to
as radar vectoring. Therefore, air traffic operations near airports, particularly for
arriving air traffic, tend to be influenced by ATC decisions rather than following
the STARs. Furthermore, the pattern of radar vectoring varies depending on the
specific airspace situation and the preferences or arrival sequencing strategies of

ATGCs. This variability, in turn, leads to an imbalance in the trajectory dataset.

The imbalance in the trajectory data set pose significant problem in training
a data-driven model. A model with the imbalanced training dataset tends to
minimize overall loss during training by focusing on the more frequent patterns,
thereby ignoring the less frequent patterns [16, [17]. In other words, the
data-driven model will adjust its parameters # mainly according to the most
frequent patterns to reduce J(#), as formulated in Eq. Consequently,
trajectories within less frequent patterns are not learned as effectively as those in
more frequent patterns. Given the potential safety implications of inaccurate

modeling in air traffic operations, it is crucial to develop a robust data-driven
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Fig. 1.1: Standard Terminal Arrival Route at Incheon International Airport

model that ensures consistent performance across various trajectory patterns by

ensuring a balanced training data set.

1 X 1 Y
J(0) = N > i — i) = N S (yi—0-a])? €]
=1 =1

It is widely recognized that the quality of the dataset is crucial when

developing data-driven models, often more so than the model (algorithm) itself.



Model-Centric Al
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(optimizing model)
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Fig. 1.2: The concept of model-centric Al and data-centric Al

In light of this, a new approach has emerged: Data-centric Al (DCAI) [[18} [19].
DCALI is an approach that emphasizes the importance of the quality, preparation,
and management of data over the refinement of models. Unlike traditional
approaches that often focus heavily on designing and optimizing models
(model-centric AlI), DCAI prioritizes enhancing the dataset itself, which is

illustrated in Fig.

In the application of DCAI (i.e., improving the quality of training dataset), it
is important to address imbalances within the training dataset [20]. Imbalances
can negatively impact the performance of models, especially in the case of
underrepresented observations, such as less frequent trajectory patterns in our

study. Note that there are various ways to improve the quality of training dataset,



including removing outliers and ensuring proper data labeling, in addition to

addressing imbalance. In this study, we focus on addressing the imbalance.

To address imbalance in training datasets, techniques such as
under-sampling and over-sampling are widely employed [21, 22| 23] 24].
Under-sampling reduces the size of the frequent pattern or dominant class by
removing some of its data points, thereby balancing the dataset. In contrast,
over-sampling involves augmenting the less frequent or underrepresented class

by creating synthetic data points, thus achieving balance in the dataset.

Although both under-sampling and over-sampling are effective methods for
addressing dataset imbalances, this study employs over-sampling. The primary
objective of this study is to improve overall trajectory prediction accuracy across
various trajectory patterns by addressing imbalance. Given that trajectory
prediction is a regression task, and considering that aircraft behavior can vary
slightly due to the factors such as differences in aircraft and navigation
performance, even within the same trajectory pattern, under-sampling data may
not be the most suitable approach. Under-sampling could remove important
variance needed for precise modeling. This could lead to decreased prediction
accuracy for frequent trajectory patterns, while potentially improving it for less
frequent ones. This obviously contradicts our objective of this study, which is to
improve prediction accuracy for less frequent trajectory patterns, while also
maintaining or, if possible, improving accuracy for more frequent trajectory

patterns.

In this study, we generate a synthetic trajectory dataset using trajectory

reconstruction model to address the imbalance in the trajectory dataset. This
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Fig. 1.3: The approach for addressing the imbalance in this study

synthetic dataset is then combined with the existing trajectory dataset to train the
trajectory prediction model, as depicted in Fig. The primary objective of this
study to improve trajectory prediction accuracy by utilizing the generated
trajectories as supplemental training data for infrequent trajectory patterns. This
approach is preferred rather than collecting additional trajectory data, due to
frequent changes in air traffic procedures and aircraft types, which may not

reflect the current state of air traffic operations.



1.3 Literature Review

We start by summarizing research papers on trajectory modeling, encompassing

trajectory clustering, trajectory reconstruction, and trajectory prediction.

1.3.1 Trajectory Clustering

Clustering, a type of unsupervised learning, automatically divides a dataset into
distinct clusters, each characterized by similar features, as exemplified in Fig.
When applied to trajectories, clustering them into multiple groups is
advantageous for analyzing air traffic flow within airspace and for developing
DSTs specific to each trajectory pattern. This approach can result in improved
performance compared to the use of a single DST for all trajectory patterns. A
pattern identification algorithm has been proposed to cluster trajectories based on
their representations in a two-dimensional latent space [25]]. As trajectory data is
inherently high-dimensional, this method effectively reduces the data dimensions
and extracts key features for clustering. A framework utilizing hierarchical
clustering and Dynamic Time Warping (DTW) was introduced for identifying
deeply embedded trajectory patterns in vectored airspace [[26L |27]]. This approach
can identify embedded trajectory patterns, though applying DTW to all
trajectories may be time-consuming. Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) was used for trajectory pattern identification
due to its ability to automatically discover trajectory clusters of any shape, even
in the presence of noise and outlier trajectory observations [28},29]. A framework
combining DBSCAN with fuzzy logic for trajectory pattern and flight phase

identification was also proposed [30]. Additionally, DBSCAN was used in
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Fig. 1.4: Example of clustering

another study, which also applied kernel density estimation to evaluate the
distribution of samples within a cluster [31]. Principal Components Analysis
(PCA) and Gaussian Mixture Model (GMM) were utilized, with the GMM being

effective under the assumption of normality in nominal flights [32]].

1.3.2 Trajectory Reconstruction

Trajectory reconstruction is carried out to generate synthetic trajectories that
resemble historical trajectory data. This technique serves two primary purposes:
(1) to simulate air traffic operations in existing traffic environments or with new
airspace designs and procedures, and (ii) to augment the training dataset for use
in other prediction models, subsequently improving their performance. A
GMM-based probabilistic trajectory model was developed, capable of generating
trajectories and performing inferences in terminal airspace [33]]. A framework for
generating aircraft trajectories in terminal airspace was proposed [34]. This
framework is capable of generating synthetic trajectories by sampling data from

a distribution given a new set of procedures. Similarly, [35]] performed trajectory



reconstruction with feature engineering using a Multi-Layer Perceptron Neural
Network (MLP NN). A Temporal Convolutional Variational Autoencoder
(TCVAE) was applied for trajectory reconstruction [36]. The authors also tested
the generated trajectories in the open-source air traffic simulator BlueSky.
Additionally, a Bayesian autoencoder was utilized to identify anomalous
behavior in trajectory data [37]]. By using the mean and standard deviation of the
reconstruction error of generated trajectories, they were able to identify
anomalous behavior in the data and determine the most significant features
contributing to trajectory reconstruction errors. [38] developed a Gaussian
Process-based probabilistic trajectory model, designed for modeling the
dispersion of trajectories and generating new trajectories that resemble historical

data.

1.3.3 Trajectory Prediction: Data-driven approaches

A simple LSTM-based prediction model was developed [39]. A hybrid
architecture based on deep learning was proposed [40]. The architecture
combined Convolutional Neural Network (CNN) and Long Short-Term Memory
(LSTM) techniques to extract both spatial and temporal features from aircraft
flight trajectory data. In contrast to conventional trajectory prediction approaches
that focused on individual aircraft, a novel framework was proposed to predict
the entire air traffic scene from a deep learning perspective, employing a
ConvLSTM-based autoencoder architecture [41]. A framework for trajectory
prediction in terminal airspace was proposed, combining a machine
learning-based method and a physics-based estimation method [42]. The

collective behavior of flight trajectories was captured through training a machine

10



learning model on historical surveillance data, enabling data-driven predictions
for incoming flights. The machine learning predictions were then incorporated as
pseudo-measurements in the physics-based estimation algorithm, Residual-Mean
Interacting Multiple Models (RM-IMM), to enhance the accuracy of trajectory
estimation. The 4D trajectory prediction problem was formulated as a
sequence-to-sequence learning problem, and a sequence-to-sequence deep long
short-term memory network (SS-DLSTM) was proposed for trajectory prediction
[43]]. Three kinds of constraints, namely Top of climb, Way-points, and runway
direction, were proposed to account for the dynamic characteristics of the aircraft
during climbing, cruising, and descending/approaching phases [44]. The model
introduced in the paper was designed to maintain long-term dependencies while
incorporating these dynamic physical constraints. A Conditional Generative
Adversarial Network (CGAN) approach was employed for weather-related
aircraft trajectory prediction problems [45]. The paper formulated the problem as
predicting trajectories conditioned on the last on-file flight plan and weather
effects. A trajectory prediction model based on attention-LSTM was proposed
[46]. The model comprised two main stages: the initial stage involved the
extraction of time-series features using LSTM, while the second stage
incorporated an attention mechanism to process the extracted sequence features.
Trajectory prediction with over-sampling technique was proposed to address
inherent imbalance in trajectory dataset [47]]. By augmenting the dataset with this
technique, a notable improvement in prediction accuracy was achieved.
Additionally, an Agent-Aware attention mechanism was employed for
multi-agent Estimated Time of Arrival (ETA) prediction in [48]]. This approach
takes air traffic situations into account during the prediction process, resulting in

more precise and reliable predictions. [49] proposed a framework that predict

11



ETA by incorporating probabilistic information for the types of trajectory

patterns.

1.4 Thesis Organization

This thesis is organized as follows: Chapter 2] describes the methodology
proposed in this study, including trajectory data preprocessing, trajectory pattern
identification, trajectory reconstruction, and trajectory prediction, which are
detailed in Sections [2.2] 2.3] 2.4 and [2.5] respectively. Numerical experiments
conducted to validate the proposed approach are presented in Chapter |3} Finally,
the paper concludes in Chapter [ with a summary of the contributions of our

work.

12



2 Methodology

2.1 Overview

In this subsection, we provide a brief overview of the key components and
processes involved in our study. The proposed framework for trajectory
reconstruction and prediction consists of three main steps: data preparation,
trajectory reconstruction, and trajectory prediction, as illustrated in Fig. In
the data preparation step, the trajectory data is preprocessed to ensure it is in the
proper format for the algorithms used in the following steps. This step includes
identifying trajectory patterns and determining the frequency of each pattern
based on the number of trajectories it contains. For the less frequent trajectory
patterns, the trajectory reconstruction step involves interpolating in the encoded
vectors to create a generated trajectory dataset. This synthetic dataset is then
combined with the existing trajectory dataset. Lastly, in the trajectory prediction
step, the augmented dataset is utilized for training the trajectory prediction

model.

2.2 Trajectory Data Preprocessing

In this paper, we use a Automatic Dependent Surveillance-Broadcast (ADS-B)
trajectory dataset between January and June 2022 that is collected from
FlightRadar24 [50]]. This dataset contains aircraft ID, registration, aircraft type,
and callsign as part of the flight information, along with latitude, longitude,
altitude, heading, speed, and squawk code in the position information. We first

convert the geographical coordinates to east-north-up (ENU) coordinates

13
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Fig. 2.2: Histogram of total flight time of actual arrival trajectories at Incheon
International Airport

determined by the airport reference point (ARP). This transformation simplifies
calculations such as distance and heading between points and reduces
computational complexity. Next, we extract the trajectory data within a 70-NM
radius from the ARP. Due to the irregular sampling rate of ADS-B data, if two
consecutive points have a time interval exceeding 3 minutes, we delete the
trajectory data, and reconstruct it to have a 4-second sampling rate. Then, we sort
the arrival trajectories from the entire dataset based on altitude change and

classify the landing runway based on the final position of the trajectory.

Moreover, the trajectory data vary in length, as the total flight time differs,
presenting challenges in the direct application of most clustering algorithms, as
illustrated in Fig.[2.2] To address this, we interpolate the trajectory data to ensure
uniform length across all datasets. For interpolation, we employ the Piecewise
Cubic Hermite interpolating Polynomial (PCHIP) [51f]. This allows us to

interpolate each dimension (east, north, up) in the aircraft trajectory, ensuring all

15



trajectory data have the same fixed length. PCHIP is selected due to its ability to
provide a smoother curve compared to other interpolation methods. The PCHIP
formulation is as follows:

For every individual segment z; < =z < x;41,
pi(z) = az® + bz + cix + d; @)
given the conditions:

pz(ﬂﬂz) = Yi

Pi(Tit1) = Yir

Yi+1 — Yi—-1
pHx;) =yl = ———
(i) ' Ti41 — Ti—1 3)
Yi+2 — Y
Pl (Ti1) = Yliy1 = — -
Tit+2 — T4

After resampling the trajectories to a uniform length, we normalize the trajectory
data to a range between 0 and 1 using min-max normalization. The normalization
process follows the equation:

X — Xmin

Vv 4)
Xrnax - Xmin

X =
Here, X represents the original trajectory data, while X,.x and Xy, denote the
maximum and minimum values of each feature, respectively. The normalization

is applied individually for each feature, accounting for their different scales, and

X is the normalized trajectory data.

16



2.3 Trajectory Pattern Identification

Given that the trajectory data is unlabeled and lacks distinct identifiers or tags,
the direct analysis and identification of air traffic flow, such as trajectory patterns,
is challenging. This issue is especially true in vectored area navigation airspace,
where trajectory patterns are deeply embedded and identifying the dominant
trajectory pattern in this airspace becomes difficult. In this section, we identify
trajectory patterns in vectored are navigation airspace using a clustering

algorithm.

2.3.1 Gaussian Mixture Model

In this stduy, Gaussian Mixture Model (GMM) is applied to identify trajectory
pattern in vectored area navigation airspace. The GMM is a probabilistic model
that represents the probability distribution of a dataset as a combination of
multiple Gaussian distributions [52], where each Gaussian distribution represents
a distinct cluster of data points. One significant advantage of using the GMM as a
clustering algorithm is its ability to identify clusters based on their probabilities.
This allows the GMM to effectively capture complex trajectory patterns that may
not be easily detected by other clustering algorithms. The formulation of the

GMM can be expressed as follows:

K
p(X) =D N (X; py, Tie)
k=1
K
subject to Z wr =1
k=1

&)

17
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Here, X represents a d-dimensional vector, and the probability distribution
for a data point X is determined by the weighted sum of K Gaussian distributions.
Each Gaussian distribution, denoted by N'(p,, ), is defined by its mean, gy,

and its covariance matrix, 3., which is expressed as:

1 1 _

N(X; pe, Bgp) = ——=——==1exp <—2(X — ) E (X - Mk)) (6)
(27)% |

The mixture weight of the k" Gaussian distribution is represented by wy, and

the sum of all of these weights is equal to 1. The parameters of the GMM, p,

and Xy) for k = 1,..., K, are estimated by the Expectation-Maximization (EM)

algorithm [53]].

To apply the GMM to trajectory data, we vectorize each trajectory data to

form a row vector X, which can be expressed as:

1 2 1 2
X:[xl,xl,...,x{,...,xt,xt,...,x{] 7
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Fig. 2.4: Pattern identification result by GMM

where ¢ represents the final time step of the trajectory, f represents the feature
dimension (i.e., east, north, and up), and x,{ denotes the value of feature f at time
step ¢. The number of clusters K (i.e., the number of Gaussian components) and
was chosen based on the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) 55]], as illustrated in Fig. @ The AIC evaluates
model fit and complexity by rewarding the likelihood of the model (i.e., how well
the GMM fits the given data X) and penalizing based on the number of
parameters, with a fixed penalty of twice the parameter count. The BIC also
assesses model likelihood but applies a penalty for complexity that increases with
the logarithm of the sample size. Fig. [2.4] depicts the pattern identification results
applied to the actual trajectory dataset. This figure confirms that distinct

trajectory patterns can be successfully identified.
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2.4 Trajectory Reconstruction

In this section, we address the imbalance issue within the trajectory dataset by
reconstructing trajectories from less frequent trajectory patterns. Trajectory
reconstruction can be approached either through algorithms (i.e., over-sampling)
or data-driven models. A well-known over-sampling algorithm is the Synthetic
Minority Over-sampling Technique (SMOTE), which generates new samples by
interpolating between k-nearest neighbors [23|]. However, SMOTE has
limitations in trajectory reconstruction: (i) the generated trajectory data may not
reflect the true underlying function of actual trajectory data, such as aircraft
performance; (ii) SMOTE’s implementation does not consider the temporal
relationships within the time-series data, which is critical in trajectory

reconstruction.

To address these challenges, we leverage the concept of an Autoencoder
(AE) that learns efficient representations of input data [56, |57], along with a
Transformer [58]]. The AE comprises an encoder, denoted as Enc(X; 6), which
compresses the input data X into a latent representation Z, and a decoder,
denoted as Dec(Z; ¢), for reconstructing the output data X. Here, 0 and ¢
represent the parameters of the encoder and decoder, respectively. These
properties enable the AE to effectively learn and replicate the underlying function
of the data, thus generating new samples that closely resemble the original data.
Integrating the concept of AE with the Transformer allows us to generate new
trajectories that effectively address the two aforementioned challenges. Fig. [2.5]
presents a comparison between the conventional approach and our proposed

approach. Further details are discussed in the following section.
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2.4.1 Transformer

In this study, we adopt a Transformer architecture as an AE for trajecotry
reconstruction [58]], as depicted in Fig. 2.6] Unlike the standard AE, which
typically consists of a Multi-Layer Perceptron Neural Network (MLP NN) and
does not inherently process time-series data, and the Transformer can potentially

be used for the same purpose (reconstruction) as an AE.

The Transformer architecture fundamentally differs from conventional
sequential models like RNNs and LSTMs [59]. Unlike these models, which
process input sequences sequentially, Transformers handle sequences in parallel.
This characteristic addresses some limitations found in Sequence-to-Sequence
(Seq2Seq) models [[60]. In Seq2Seq models, compressing an entire input
sequence into a fixed-size vector can lead to information loss, a problem that is
particularly pronounced with longer sequences such as trajectories. In contrast,
Transformer models utilize self-attention mechanisms to dynamically
contextualize information, enabling the direct modeling of relationships across
all parts of the input sequence. This approach allows for improved handling of

long-range dependencies, free from the constraints of fixed-size context vectors.

The attention mechanism, the main part of Transformer, mimics human
cognitive behavior, wherein selective focus is placed on certain parts of the
information, rather than concurrently processing the entire spectrum of available
information. The model attends to crucial points within a sequence, with this
focus dynamically shifting depending on the particular context of each
prediction. This is performed by assigning weights to each data point in the

sequence, ensuring that the weights sum to one, with each weight indicating the
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Fig. 2.6: Transformer architecture [|58]]

relative importance of the corresponding data point. The scaled dot-product

attention can be characterized as follows:

Attention(Q, K, V') = softmax <QKT> \% (8)
T Vdg

Here, the query denoted as () serves as an information-seeking vector, aiming
to identify relevant information among the keys represented by K. The keys K
provide the answer (i.e., which specific data point are most relevant to the query Q)
by the similarity measure from dot-product QK ”', which quantifies the similarity
between the () and K. Lastly, the values V' are associated with the K and serve
to represent the information corresponding to K. The attention mechanism can be

thought of as a mapping function that takes the the query ) along with the key-
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value pairs K,V as its inputs. It processes this information to assign weights to
the values V' based on the similarity between the query () and the keys K. These
weighted values are then summed to produce the output, reflecting the importance
of different elements in the input sequence. The output of dot-product is scaled by
\/d because the magnitude of the dot-product can grow large, especially when
the dimensionality dx of K is high. This can lead to issues with very large or

small gradients during the training.

Furthermore, multiple attention functions can be employed in parallel to
learn diverse representations, with each attention head concentrating on a
different aspect of the input data. The concept of multi-head attention, which

consists of n number of heads, is defined as follows:
MultiHeadAttention(Q, K, V) = (head, & heady & - - - & head,)W°  (9)

where heady, = Attention(QW2, KWK, VWY, and W, Wi, WY, WO, h =
1,--- ,n, are trainable weights. In the equation above, @ denotes concatenation

of vectors.

In this architecture, trajectories of considerable length can be reconstructed
with high efficiency. However, simply replicating trajectories for dataset
augmentation, as the AE might, could result in reproductions with limited
variability, which is inappropriate for our purposes. To address this, we propose a
novel approach consisting of three distinct stages, as illustrated in Fig. @)
encoding all trajectories within a less frequent trajectory pattern, (ii) identifying
the k-nearest neighbors using the encoded vectors and computing a weighted

sum of these k vectors, and (iii) decoding the aggregated encoded vectors to
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reconstruct the trajectory.

By interpolating the encoding vectors, we generate trajectories similar to the
original trajectories. The weights \;, randomly drawn and constrained to sum to

one, are assigned to each encoding vector. The interpolation is performed as

follows: .
Z=3"X\"Z
i=1
] (10)
subject to Z A=1
i=1

The model specifications and training hyperparameters are detailed in Table

Hyperparameter Detail
Hidden dimension 32
Number of layers 3

Number of heads 2
Feedforward dimension 64
Optimizer Adam
Number of epochs 200
Learning rate le™3
Loss function MSE (L2)
Dropout rate 0.1

Table 2.1: Trajectory reconstruction model specifications

2.4.2 Temporal Information Transfer

After augmenting our dataset with newly generated trajectories, we achieved a
more balanced distribution among different trajectory patterns. However, this
process introduced a significant challenge: the distortion of temporal information
in generated trajectories. Due to the interpolation of original trajectories of

varying lengths into a uniform length, which is the appropriate format for input
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Algorithm 1 Temporal Information Transfer

Require: Trajectories G = {g1,92,...,gm}and T = {71, 72, ..., 7N}
Ensure: Aligned trajectories with interpolated generated trajectories

1: Compute distance matrix D using DTW on G and T

2: Identify closest point pairs (g;, ;) using D

3: for each closest point pair (g;, 7;) do

4:  Interpolate the number of data points in g; to match the number in 7;

5: end for

6: Construct the warping path P from the closest point pairs

7. return Aligned trajectories with interpolated generated trajectories

into GMM and Transformer, the time intervals in trajectories are distorted, being
either stretched or compressed. This can lead to unrealistic time intervals
between successive points in the generated trajectories. This irregular time
intervals may affect the efficacy of trajectory prediction model, highlighting the
need for maintaining realistic time intervals in the trajectory data. For instance, in
predicting future trajectory sequences over a period of 2 minutes, the ambiguity
in time intervals complicates determining the necessary number of time steps for

accurate prediction.

To address this issue, we present the Temporal Information Transfer
algorithm, as outlined in Algorithm |1} This algorithm utilizes Dynamic Time
Warping (DTW) to measure distances between original trajectory and generated
trajectory. DTW is chosen for its ability to assess similarity between two
temporal sequences, irrespective of their differing lengths [[61]. Consider two
vectors, x| = [mgl);...;a:gm)] € R™ and 2o = [:cgl),...,xg")] € R"”, each
representing a sequence of m and n time steps, respectively. The distance
between i time step of x1, and j* time step of x5 is denoted d(i,5) for all
ie{l,...,m},j € {1,...,n}. By computing distances for each pair of indices

7 and j, a distance matrix is formed. Within this matrix, the warping path can be
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d(i,j + 1)
d(i+1,j+1)

Kis1
d(i, ) t+1)

Fig. 2.8: Three possible direction for each element

identified. The warping path P is a sequence of elements within the matrix that
traces the most effective alignment between the two sequences. The identification

of the warping path P is determined through the following equation:

d(i+1,7),

d(i, §) = |2} — @l +min g, j + 1), an

d(i+1,j+1).

In the above equation, d(i,7) represents the cumulative distance at each
element (i,7) in the matrix, computed as a sum of two components: the
Euclidean distance between the i*” element of x; and the j** element of xo,
denoted as ||z — 2|2, and the minimum of three possible preceding steps in the

matrix: d(i + 1, 5),d(z,j 4+ 1),d(i + 1, j + 1), which is illustrated in Fig.[2.8|

We then construct a distance matrix D, where each row corresponds to an
index from the set of original trajectories 7 = {71, 72, ..., 7n }, and each column
corresponds to an index from the set of generated trajectories
G =1{91,92,---,9m}, and the matrix values denote the distance between these
trajectories, as illustrated in Fig. [2.9] The algorithm identifies pairs of trajectories

with the shortest distances. For each identified pair, the generated trajectory is
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Fig. 2.9: An example of distance matrix by DTW

re-interpolated to match the number of data points in the original trajectory,
thereby aligning the time interval of the generated trajectory with that of the
original. This process is based on the assumption that if two trajectories are very
similar (indicated by a short distance), their total flight times should also be very

similar.

Figure presents a comparison across four dimensions—north, east, up,
and speed—between two types of trajectories: one re-interpolated and another
un-interpolated. In the first three figures, a significant gap is observed between
the two trajectories, despite both being plotted with the same number of data
points (30). The un-interpolated trajectory exhibits unrealistic intervals between
points, indicating abrupt speed changes during the arrival stage. This is
inconsistent with typical aircraft behavior and could adversely influence learning
since the original trajectory does not exhibit such speed variations. In the last
figure, the un-interpolated trajectory demonstrates a significantly higher speed

compared to the re-interpolated trajectory, again diverging from expected aircraft
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Fig. 2.10: Comparison of re-interpolated and un-interpolated trajectories

behavior during the arrival stage. Note that the re-interpolated trajectory is

adjusted based on the number of data points from the trajectory with the shortest

distances using a temporal information transfer algorithm, enabling it to more

accurately reflect the speed profile of the original trajectory.
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2.5 Trajectory Prediction

In this section, we explore the basics of LSTM and the structure of a trajectory

prediction model using Sequence to Sequence architecture.

2.5.1 Long Short-Term Memory

Long Short-Term Memory (LSTM) networks have since been a cornerstone of
the field of deep learning [59]. LSTMs are a subset of Recurrent Neural
Networks (RNNs) [62], a class of neural networks that possess a form of memory
allowing them to process sequential data. The key innovation of LSTM networks
is their capacity to retain and selectively recall information over lengthy
sequences, overcoming the vanishing gradient issue common in traditional
RNNs. An LSTM network operates through internal states that store information
from previous inputs, managed by a complex array of gating units that regulate
memory flow. The structure of these gates within an LSTM cell can be seen in

Fig.[2.T1] and can be formulated as follows:

Ly, = oWy - [he—1, ] + by)

L, = o(Wi - [hy—1, 2] + b;)

ét == tal'lh(WC . [htfl, JJt] + bc)
(12)

Cy = Fft OC_1+T1;, 0C

Fot = U(Wo : [ht—b ZCt] + bo)

hi =Ty, ® tanh(C})
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Fig. 2.11: The structrue of LSTM cell

where x; denotes the input at time step ¢, h;—1 and C;_; represent the hidden and
cell states from the previous time step, and I'y,, I';,, I',, denote the forget, input,
and output gates at time ¢, respectively. C, signifies the candidate cell state.
Element-wise multiplication is denoted by ®, while ¢ and tanh refer to the
sigmoid and hyperbolic tangent activation functions. The terms W, W;, W¢,
and W, represent the weight matrices that the network learns during training, and
bs, b;, bc, and b, denote the bias vectors, which are consistent and applied at

each time step.

2.5.2 Sequence-to-Sequence Architecture

To enhance the prediction of future sequences based on given input sequences,we
utilize a Sequence-to-Sequence (Seq2Seq) model [60], incorporating LSTM in
both encoder and decoder, as shown in Fig. Note that the Transformer
architecture can also be employed for trajectory prediction. However, for short to
medium-length sequences, particularly in the context of trajectory prediction, our

findings indicate that LSTM tends to outperform the Transformer. Nevertheless,
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Fig. 2.12: Seq2Seq architecture for trajectory prediction

for trajectory prediction involving longer sequences, the Transformer architecture
also should be explored carefully. Originally designed for machine translation,
the Seq2Seq is adept at handling tasks involving sequential input and output.
Here, the Encoder processes and compresses the input sequence into a context
vector C. The Decoder then processes this context vector to generate predictions,
using its previous output as the input for the next time step, a process known as
the autoregressive configuration. The Seq2Seq model can be represented by the

following two main equations:

C = Enc(X;0)
(13)
Xi4i = Dec(C, Xi4i—1; )

where X represents the input sequence, )A(tﬂ-,l denotes the predicted value at
time step t +¢ — 1, and X ++4 1s the predicted value at time step ¢ + 4. § represents

the parameters of the encoder, and ¢ denotes the parameters of the decoder.

To further enhance predictions, our architecture incorporates an attention

mechanism [63]]. This mechanism produces an attention context vector, which
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Fig. 2.13: Attention mechanism for trajectory prediction

can be utilized in two ways: (i) by concatenating it with the decoder’s hidden
state, or (ii) by replacing the decoder’s hidden state with it. Our study employs
concatenation, as shown in Fig. [2.13] to preserve sequential context from the
decoder’s hidden state, which might be lost if relying solely on the attention
context vector. This approach concatenates two key types of information: specific
portions of the input sequence at the current stage from the attention context, and
the cumulative output sequence from the decoder’s hidden state. This process
enhances the model’s ability to make informed predictions for subsequent
outputs. Note that although the attention mechanism equations in both the
Transformer and Seq2Seq models are identical, their applications differ. In the
Seq2Seq, the query @ is represented by the decoder’s hidden state, while the

keys K and values V' correspond to the encoder’s hidden state. This contrasts
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with the self-attention mechanism in the Transformer model, where (), K, and V'
are all from same sequence. In other words, the attention mechanism in the
Seq2Seq model is used to identify which data points in the input sequence are
most relevant when making a prediction. Conversely, in the Transformer, the
attention mechanism serves to contextualize each data point within the input
sequence in relation to all others. The model specifications and training

hyperparameters are detailed in Table

Hyperparameter Detail
Hidden dimension 256
Number of layers 3
Number of FC layers 3

FC activation function ReLu
Teacher forcing ratio 0.5
Optimizer Adam
Number of epochs 200
Learning rate le™3
Loss function MSE (L2)
Dropout rate 0.1

Table 2.2: Trajectory prediction model specifications
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3 Numerical Examples

In this section, we evaluate our proposed approach and provide the results for
trajectory reconstruction and prediction in the vectored area navigation airspace
of Incheon International Airport. Both trajectory reconstruction and prediction
models were trained on a desktop featuring an Intel Core i7-12700F CPU (20
cores), 32 GB RAM, and an NVIDIA GeForce RTX 3060 GPU. Pytorch was used
for model development [64]], and mixed precision training was applied to improve

training efficiency [65].

3.1 Airspace of Interest

In this study, we focus on arrival aircraft trajectories in vectored area navigation
airspace of Incheon International Airport, which is within 70 NM radius from the
airport reference point. The arrival aircraft trajectory usually enters this airspace
via one of four designated entry fixes: REBIT, OLMEN, GUKDO, and KARBU.
Aircraft entering through REBIT usually originate from China and Europe, while
those passing OLMEN often come from Southeast Asia and Jeju, South Korea.
Furthermore, aircraft entering through GUKDO are typically flying from Japan
and Oceania, and those passing through KARBU are mostly from the Americas.
Fig. shows the vectored area navigation airspace of Incheon International

Airport and STARs under RWY 15/33 and RWY 16/34 configurations.

In the development of the trajectory reconstruction model, the trajectory
dataset within this airspace was segmented into training, validation, and test

dataset in an 8:1:1 ratio. Similarly, for the trajectory prediction model, the
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Fig. 3.1: Vectored area navigation airspace of Incheon International Airport

Dataset Training  Validation Test
Trajectory Reconstruction 19,910 4,977 4,977
Trajectory Prediction 38,855,156 485,645 485,645

Table 3.1: Trajectory dataset segmentation

trajectory dataset was partitioned following the same 8:1:1 ratio. The training
dataset is used to train the model, enabling it to learn the patterns within the
dataset. The validation dataset provides an unbiased evaluation of the model’s fit
during the training phase, facilitating hyperparameter tuning. Finally, the test
dataset is employed to assess the model’s performance after training. Note that
the wvalidation dataset is incorporated into the training dataset after
hyperparameter tuning is complete. Table [3.1] displays the resulting number of
samples in each dataset. The counts for each dataset in the two models vary due
to the application of a sliding window technique in the trajectory prediction

model, which divides a trajectory into multiple subsequences.
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3.2 Trajectory Reconstruction

In Section[2.3] we identify a total of 11 infrequent trajectory patterns. Trajectory
reconstruction is performed to reconstruct and augment these trajectory patterns.
During training, all trajectories from these infrequent patterns are input into a
trajectory reconstruction model. For reconstruction, trajectories from each pattern
are individually processed by the model, ensuring that results are not influenced
by trajectories from other patterns. The top part of Fig. illustrates the original
(real) trajectories on the left, with a histogram on the right indicating the count of
trajectories within each pattern. This histogram highlights a considerable variance
in the number of trajectories across different patterns. The bottom part of Fig.
displays the generated trajectories on the left and the associated histogram on the
right, depicting the number of trajectories for each pattern following trajectory

reconstruction, which demonstrates a more balanced distribution.

To evaluate if the trajectory reconstruction model accurately captures the
realistic physical properties of arriving aircraft, we analyze the horizontal and
vertical speeds of both generated and actual trajectories across each trajectory
pattern. Note that the trajectory reconstruction is performed for only less frequent
trajectory patterns. The speed distributions, illustrated in Figures [3.3] and [3.4]
serve as indicators of the model’s fidelity in replicating the actual dynamics of
aircraft movements. These figures indicate that the model effectively learns and
replicates the realistic physical characteristics of arriving aircraft, even though

the generated trajectories are derived through interpolation.

38



0] 2000
04 1750 1
104 1500
2
< 20 8 1250
g B
3
~30 4 -2 1000
-g 30 g
4 k]
—40 s 750 4
-50 - 500 -
~60 250
04
0 5 10 15 20
Pattern Index
10 1
2000
04
1750 A
—10 1500
o §
E -20 4 S 1250 A
£ H
£ 01 % 1000
*
—40 - 750
0 500
250 A
—60

T T T T T T T 0-
—60 —40 -20 0 20 40 60 10 15
East (NM) Pattern Index

Fig. 3.2: Real (top) and generated (bottom) trajectories at Incheon International
Airport

39



(s10ty) paeds [eyuozLoH
00 00€ 00T

e
pajersuad [

S9110309(en) [BAI pUB PIJRIdUIS JO suonnNqLIsIp paads [BIUOZLIOH :€°€ *SI

F 9000

F L000

(sjowy) paads [eIuozZLIOH
00 00 00T 0

Tear =
pajerouad [

01

F 1000

F 2000

Aysuoq

F €000

F ¥00°0

F S00°0

(s1ow) paadg [eyuozLIof]
00§ 00t 00€

fear 2
parerduad [

00T

fswoq

F L00°0

I 8000

(s10ty) paeds [eyuozLoH
009 00§ 00 00€

Teat

pajersuad [

00T

(s1ow) paadg [eyuozLIof]
00 00€

Tear
parerduad [

00T

=)
fswaq

F S00°0

(sjowy) paads [eIuozZLIOH

(s10ty) paads [eyuoZLOH
00 00 00T 00 00 00T
r 0000 0000
F 1000
F 1000
F 2000
o F T00°0 o
| co00 € g
Z. Z.
3 3
L 000 - €000
I s000 L 000
Teal Teal
pajerouad [ L 9000 pajerouad [
(s1ouy) paads [epuozrIoy (s1ow) paadg [eyuozLIof]
00t 00€ 00T 00§ 0ot 00€ 00T
r 0000
F 1000
F T00°0
=] =]
0 g - €000 £
F ¥00°0
F 000
fead [ et
EEAEIER ojeIouad y
P — L o000 P — L 9000

(s10ty) paeds [eyuozLoH
009 00§ 00 00€ 00T

Tear [
pajerduad [

r 07000

=]
Ansuag

(s1ow) paadg [eyuozLIof]
00$ 00 00€ 00T

et
pajersuad [

F S00°0

40



S9110303(k1) [BAX PUE PIJRIIUIS JO SUONNQINSIP PAads [BONIAA "¢ "SI

() paads [eoniep.
0001 000Z—

000€~

000t—

+ 00000
F 10000
- 20000
- £0000
F 0000
F 0000
- 90000
Tea1 I
porerowad [ L0000
(INdd) peads [eanion (Ndd) paads eonrep.
0001 000T-  000€-  000b— 0001—  000C- 000§~  000t—
L 00000 + 00000
L 10000
[ 0000 F 20000
F £0000
F 70000 L 0000
Z k 50000
F 90000
- 90000
kL0000
Teor [ 80000 el )
parerouad [ poresouss [ [ 80000
(D) podds TeonIon (D) podds TeonIon
0001 000T-  000€-  000b— 0001—  000C- 000§~  000t—
L 00000 + 00000
+ 20000 F 10000
F 50000 [ o000
m_ F €£000°0
F 90000 &
F 0000
- 80000
F 0000
Tear § e
pojerowsd [ [ 01000 parerousd [
F 90000

2lef

it

2lef

it

2lef

it

() paads [eoniep.

() paads [eoniep.

0001—  000C- 000§~  000Y— 0001—  000T- 000§~  000y—
+ 00000 + 00000
I 10000
F 20000
- 20000
| voooo I €000°0
g I 0000
F 90000 & I $000°0
F 90000
F 80000
L0000
o1 ] LS ’
paerouss [~ [ 01000 poreroned [ [ 80000
(INdd) peads [eanion (Ndd) paads eonrep.
0001—  000C- 000§~  000y— 0001—  000T- 000§~  000y—
+ 00000 + 00000
L 20000 - 20000
F #0000
F £000°0
g .
B F 90000
F 90000 <
I 80000
- 80000
o war g [ 01000
pajerowad [ L 01000 parerousd [
21000
(D) podds TeonIon (D) podds TeonIon
0001—  000C- 000§~  000y— 0001—  000T- 000§~  000y—
+ 00000 + 00000
L 10000 I 10000
L 20000 - 20000
L co000 9 I €000°0
Z F £0000
L v0000 <
I $000°0
F 0000
I 90000
®1 | 90000 e [
SElE] SElE]
pon — pay = ;0000

Ansuag

=)
£
=

41



Original
trajectory

W 7~ Random draw dataset

V)
10 /\
ATC -20 \ W
. )
A )
. . ~
“Trajectory 1 is real.” Generated
w trajectory
\ =~ dataset

o

Random draw

s

Fig. 3.5: Example of ATC Turing Test

3.2.1 ATC Turing Test

To evaluate the realism of the generated trajectories, we conducted an ATC
Turing Test, a commonly used method for validating the realism of generated
trajectories [33, 660]]. In this test, subjects are asked to differentiate between
trajectories generated by the reconstruction model and actual trajectories, as
illustrated in Fig. [3.5] We selected 10 random samples from both the generated
and real trajectory datasets. Each ATC was presented with 10 pairs of these
trajectories. Each pair included a lateral view (east, north) and an altitude profile.
We calculated the accuracy of their identifications to determine how well the

trajectories could be differentiated.

The ATC Turing Test was conducted with four ATCs who have experience
managing terminal airspace at Incheon International Airport. As shown in Table
[3.2] participants correctly identified model-generated trajectories only 40% of the
time, on average. This low rate of correct identification suggests that the

model-generated trajectories were often perceived as real by these experienced
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Subject Accuracy

ATC 1 20%
ATC?2 40%
ATC 3 60%
ATC 4 40%

Average 40%

Table 3.2: ATC Turing Test results

ATCs. Such results suggest that our trajectory reconstruction model successfully

mimics realistic aircraft behavior, creating trajectories that closely resemble

actual trajectory patterns.
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3.3 Trajectory Prediction

Trajectory prediction is conducted to assess and compare the performance of the
proposed approach with the conventional approach. For this, two models are
trained: one using an augmented training dataset and the other using the original
dataset. To maintain fairness and consistency in evaluation, both models are
trained under identical conditions, with the details of this training environment

outlined in Table

In the paper [67]], median response times for ATCs are recorded as 88 seconds
for Conflict Alerts (CA) and 38 seconds for Minimum Safe Altitude Warnings
(MSAW). Fig. 3.6 illustrates the examples of CA and MSAW. These response
times are measured from the activation of an alert to the issuance of air traffic
control instructions. In light of this, we have set the trajectory prediction horizon to
2 minutes. This prediction horizon, exceeding the longest median response time,
provides ATCs with sufficient time for effective decision-making. Specifically,
the advantage of this prediction horizon include: (i) providing a buffer to account
for potential delays in decision-making processes, and (ii) reducing the need for

ATCs to continuously monitor the situation, thus enabling earlier and potentially
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more efficient interventions. In our evaluation, predictions span a horizon of 30
timesteps, equivalent to 120 seconds, with each timestep having a duration of
At = 4 seconds. The extension to a longer prediction horizon is left for future

work.

3.3.1 Evaluation Metrics

In order to evaluate the performance of our prediction model, we utilized four
evaluation metrics described in [68], 69, |70, [71]]. The Horizontal Error (HE)
measures the discrepancy between the actual and predicted positions of an
aircraft in the horizontal plane. The Along-Track Error (ATE) gauges the
deviation along the actual flight path, while the Cross-Track Error (CTE)
assesses the perpendicular deviation from this path. The Vertical Error (VE)
denotes the difference in altitude, representing vertical deviations. These four

metrics are illustrated in Fig.
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3.3.2 Prediction Results

In order to demonstrate the effectiveness of our approach, we present three
illustrative examples of prediction results. Figure [3.8] displays these for three
arrival trajectories, with the top-down view on the left and side views on the
right. Observations from Figure [3.8] show that while the baseline model generates
predictions aligning with the overall trend, our proposed model yields more

accurate predictions, closely matching the actual ground truth trajectory.

We also observe a reduction in trajectory fluctuations, resulting in smoother
predicted trajectories. This enhancement is due to the model’s improved
generalization ability, achieved by training with a more varied set of examples
compared to the original dataset. This diversity in training data contributes

significantly to the model’s robust performance during evaluation.
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Fig. 3.9: Histogram of HE, ATE, CTE and VE of two trajectory prediction models

To evaluate the performance of the trajectory prediction model, we
computed four metrics: HE, ATE, CTE, VE, as defined in Section [3.3.1] These
metrics were calculated based on the predicted trajectories and the corresponding
ground truth trajectories. For clarity in comparison, we used the absolute values
of these error metrics, even though some can have negative values. Fig. [3.9
displays histograms for these four metrics. In these histograms, the proposed
model shows a higher concentration of values near zero compared to the baseline
model, indicating better accuracy. More importantly, there is a reduction in error
variance, highlighting the model’s robust prediction capability. This suggests
consistent performance by our model, irrespective of the trajectory pattern’s

frequency.
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4 Conclusion

4.1 Concluding Remarks

Motivated by the need for the development of an accurate trajectory prediction
model in terminal airspace, particularly within vectored area navigation airspace,
a novel framework has been developed to address the inherent imbalances in
trajectory dataset. This framework employs the Transformer architecture for
trajectory reconstruction, augmenting the training dataset with reconstructions of
infrequent trajectory patterns. It also utilizes an LSTM network for trajectory
prediction. The proposed framework effectively generates trajectories that are
similar to the original ones while introducing variation. Its effectiveness has been
validated using real trajectory data from Incheon International Airport. When
compared to a baseline model trained on the original dataset, the proposed

framework demonstrates superior performance across four evaluation metrics.

4.2 Possible Applications

We believe that this framework could be extended to the development of other
decision support tools for ATCs. For example, this framework can be easily
modified for developing Estimated Time of Arrival (ETA) prediction models.
Moreover, the trajectory reconstruction model holds significant potential in
developing a Collision Risk Model (CRM). This is particularly crucial given the
infrequency of collisions; accurate collision risk modeling requires a substantial
amount of trajectory data, which the trajectory reconstruction model can easily

provide. Additionally, the trajectory reconstruction model could be repurposed
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for simulating new flight procedures with minor adjustments to the data format.

4.3 Future Work

For future work, it would be beneficial to investigate additional techniques for
trajectory pattern identification, incorporating domain knowledge to refine this
process. Exploring alternative generative models like Variational Autoencoders
(VAEs) and Generative Adversarial Networks (GANs) could lead to
advancements in trajectory reconstruction. Furthermore, modifying the loss
function in the training of trajectory prediction models to more directly reflect

aircraft movements could be beneficial.
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Appendix

Further details of the trajectory reconstruction model and the trajectory prediction
model are provided in Table and[A.2] The shape is represented as (batch size,
sequence length, dimension), where ¢ denotes the timestep in the decoder. Both

models employ an autoregressive configuration in the decoder.

Layer Input Shape Output Shape
Input Embedding (16, 250, 3) (16, 250, 32)
Positional Encoding - (16, 250, 32)
Encoder
Self-Attention (16, 250, 32) (16, 250, 32)
Residual Connection (16, 250, 32) (16, 250, 32)
Layer Normalization (16, 250, 32) (16, 250, 32)
Feedforward 1 (16, 250, 32) (16, 250, 64)
ReLu Activation function (16, 250, 64) (16, 250, 64)
Feedforward 2 (16, 250, 64) (16, 250, 32)
Residual Connection (16, 250, 32) (16, 250, 32)
Layer Normalization (16, 250, 32) (16, 250, 32)
Decoder
Masked Self-Attention (16, ¢, 32) (16, 4, 32)
Residual Connection (16, ¢, 32) (16, ¢, 32)
Layer Normalization (16, 4, 32) (16, 4, 32)
Cross-Attention (16, 250, 32), (16, ¢, 32) (16, ¢, 32)
Residual Connection (16, 4, 32) (16, 4,32)
Layer Normalization (16, ¢4, 32) (16, ¢, 32)
Feedforward 1 (16, ¢4, 32) (16, 4, 64)
ReLu Activation function (16, ¢, 64) (16, ¢, 64)
Feedforward 2 (16, 4, 64) (16, 4,32)
Residual Connection (16, ¢, 32) (16, ¢, 32)
Layer Normalization (16, ¢, 32) (16, ¢, 32)
Output Embedding (16, 4, 32) (16, ¢, 3)

Table A.1: Structure of Transformer
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Layer Input Shape Output Shape

Encoder
LSTM Layer 1 (128, 30, 3) (128, 30, 256)
LSTM Layer 2 (128, 30, 256) (128, 30, 256)
LSTM Layer 3 (128, 30, 256) (128, 30, 256)

Decoder
LSTM Layer 1 (128,74, 3) (128, ¢, 256)
LSTM Layer 2 (128, ¢, 256) (128, £, 256)
LSTM Layer 3 (128, ¢, 256) (128, ¢, 256)
Cross-Attention (128, 30, 256), (128, ¢,256) (128, ¢,512)
Feedforward 1 (128, 4, 512) (128, ¢, 256)
ReLu Activation function 1 (128, 4, 256) (128, ¢, 256)
Feedforward 2 (128, ¢, 256) (128, ¢4, 128)
ReLu Activation function 2 (128, 4, 128) (128, 4, 128)
Feedforward 3 (128, 7, 128) (128, ¢4, 3)

Table A.2: Structure of Seq2Seq LSTM
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Fig. [AT] and Fig. [A.2]illustrate the original and generated trajectories for a

less frequent trajectory pattern, respectively.
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Fig.[AJ]illustrates the application of dynamic time warping to trajectories.
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